證明 ( a + b ) ( a − b ) ≡ a 2 − b 2 {\displaystyle (a+b)(a-b)\equiv a^{2}-b^{2}} :
L.H.S. = ( a + b ) ( a − b ) = a 2 − a b + b a − b 2 = a 2 − b 2 = R.H.S. ∴ ( a + b ) ( a − b ) ≡ a 2 − b 2 {\displaystyle {\begin{aligned}{\text{L.H.S.}}&=(a+b)(a-b)\\&=a^{2}-ab+ba-b^{2}\\&=a^{2}-b^{2}\\&={\text{R.H.S.}}\\\therefore (a+b)(a-b)\equiv a^{2}-b^{2}\end{aligned}}}
上述恆等式稱作平方差,記為
利用恆等式,展開
解
{{{3}}}
展開
證明 ( a + b ) 2 ≡ a 2 + 2 a b + b 2 {\displaystyle (a+b)^{2}\equiv a^{2}+2ab+b^{2}} :
L.H.S. = ( a + b ) 2 = ( a + b ) ( a + b ) = a 2 + a b + b a + b 2 = a 2 + 2 a b + b 2 = R.H.S. ∴ ( a + b ) 2 ≡ a 2 + 2 a b + b 2 {\displaystyle {\begin{aligned}{\text{L.H.S.}}&=(a+b)^{2}\\&=(a+b)(a+b)\\&=a^{2}+ab+ba+b^{2}\\&=a^{2}+2ab+b^{2}\\&={\text{R.H.S.}}\\\therefore (a+b)^{2}\equiv a^{2}+2ab+b^{2}\end{aligned}}}
上述恆等式稱作和平方,記作
只要b變為 − b {\displaystyle -b} ,變為差平方,記作
兩個恆等式均為完全平方
( p 9 + q 6 ) 2 = ( p 9 ) 2 + 2 ⋅ p 9 ⋅ q 6 + ( q 6 ) 2 = p 9 ⋅ p 9 + 2 ⋅ p q 54 + q 6 ⋅ q 6 = p 2 81 + p q 27 + q 2 36 {\displaystyle {\begin{aligned}({\frac {p}{9}}+{\frac {q}{6}})^{2}&=({\frac {p}{9}})^{2}+2\cdot {\frac {p}{9}}\cdot {\frac {q}{6}}+({\frac {q}{6}})^{2}\\&={\frac {p}{9}}\cdot {\frac {p}{9}}+2\cdot {\frac {pq}{54}}+{\frac {q}{6}}\cdot {\frac {q}{6}}\\&={\frac {p^{2}}{81}}+{\frac {pq}{27}}+{\frac {q^{2}}{36}}\end{aligned}}}
( c − 7 ) 2 + ( 8 c + 1 ) 2 = c 2 − 14 c + 49 + 64 c 2 + 16 c + 1 = 65 c 2 + 2 c + 50 {\displaystyle {\begin{aligned}(c-7)^{2}+(8c+1)^{2}&=c^{2}-14c+49+64c^{2}+16c+1\\&=65c^{2}+2c+50\end{aligned}}}