C = Q V ( C o l V o l t = F a r a d a y ) = σ A V = σ d / ϵ ∵ V = E d = σ d ϵ {\displaystyle C={\frac {Q}{V}}{\begin{matrix}{\begin{smallmatrix}(\end{smallmatrix}}{\frac {Col}{Volt}}{\begin{smallmatrix}=\,Faraday\,)\end{smallmatrix}}\end{matrix}}={\frac {\sigma A}{V=\sigma d/\epsilon }}\quad \because V=Ed={\frac {\sigma d}{\epsilon }}}
a b {\displaystyle a\;b}
V = ∫ a b k Q r 2 d r = − k Q [ 1 r ] a b = k Q ( 1 a − 1 b ) C = Q V = 1 k a b b − a {\displaystyle {\begin{aligned}&V=\int _{a}^{b}{\frac {kQ}{r^{2}}}dr=-kQ\left[{\frac {1}{r}}\right]_{a}^{b}=kQ\left({\frac {1}{a}}-{\frac {1}{b}}\right)\\&C={\frac {Q}{V}}={\frac {1}{k}}{\frac {ab}{b-a}}\end{aligned}}}