# User talk:Giggle2005

## 对您所给高中数学的编写建议的回应

首先十分感谢您为维基教科书的建设做出的贡献，也感谢您能解答我的疑惑。如果我没有误解的话，您的大致意思应该是要将高中数学这本教科书编写为一本通识教科书，而不是以考试为目的的教科书。我十分赞成您的做法，但是目前这本书已经被链入许多其他页面，可能会造成一些其他误会，如果可能的话，希望您能在遇到这些被链入的页面时能将其删除。现在我也在或快或慢地编撰高中生物，对编撰教科书也深有体会。私以为您目前对于高中数学的目录编纂可能还存在一些问题，其次，您编撰的内容似乎有些枯燥，如果能够将加入一些情景引入会更好一些。推荐您可以参考我翻译一部分的来自于英文维基教科书《线性代数》(Linear Algebra)为了方便您的参考，将其列如下：

Systems of linear equations are common in science and mathematics. These two examples from high school science (O'Nan 1990) give a sense of how they arise.
线性方程组在科学和数学中很常见。这两个来自《高中科学》（奥南1990）的例子让我们了解了它们是如何产生的。

The first example is from Physics. Suppose that we are given three objects, one with a mass known to be 2 kg, and are asked to find the unknown masses. Suppose further that experimentation with a meter stick produces these two balances.
第一个例子来自物理学。假设我们得到三个物体，一个质量已知为2公斤，要求出另外两个物体质量。进一步假设，使用天平进行试验可以产生这两种平衡。

Since the sum of magnitudes of the torques of the clockwise forces equal those of the counter clockwise forces (the torque of an object rotating about a fixed origin is the cross product of the force on it and its position vector relative to the origin; gravitational acceleration is uniform we can divide both sides by it). The two balances give this system of two equations.
由于顺时针力的力矩大小之和等于逆时针力的大小（绕固定原点旋转的物体的力矩是其上的力与其相对于原点的位置矢量的叉积；重力加速度是均匀的，我们可以用它来划分两边）。这两个天平给出了这个由两个方程组成的方程组。

${\displaystyle {\begin{cases}{\begin{array}{rl}40h+15c&=100\\25c&=50+50h\end{array}}\end{cases}}}$

Can you finish the solution?

 c = kg h = kg

The second example of a linear system is from Chemistry. We can mix, under controlled conditions, toluene ${\displaystyle {\hbox{C}}_{7}{\hbox{H}}_{8}}$ and nitric acid ${\displaystyle {\hbox{H}}{\hbox{N}}{\hbox{O}}_{3}}$ to produce trinitrotoluene ${\displaystyle {\hbox{C}}_{7}{\hbox{H}}_{5}{\hbox{O}}_{6}{\hbox{N}}_{3}}$ along with the byproduct water (conditions have to be controlled very well, indeed— trinitrotoluene is better known as TNT). In what proportion should those components be mixed? The number of atoms of each element present before the reaction

线性方程组的第二个例子来自化学。我们可以在受控制的情况下混合甲苯（${\displaystyle {\hbox{C}}_{7}{\hbox{H}}_{8}}$） 和硝酸（${\displaystyle {\hbox{H}}{\hbox{N}}{\hbox{O}}_{3}}$）的生产条件三硝基甲苯（${\displaystyle {\hbox{C}}_{7}{\hbox{H}}_{5}{\hbox{O}}_{6}{\hbox{N}}_{3}}$）及其副产物水 （条件必须控制得很好，实际上，三硝基甲苯被称为TNT）。这些成分应该按多大比例混合？每种元素在反应前存在的原子数

${\displaystyle x\,{\rm {C}}_{7}{\rm {H}}_{8}\ +\ y\,{\rm {H}}{\rm {N}}{\rm {O}}_{3}\quad \longrightarrow \quad z\,{\rm {C}}_{7}{\rm {H}}_{5}{\rm {O}}_{6}{\rm {N}}_{3}\ +\ w\,{\rm {H}}_{2}{\rm {O}}}$

must equal the number present afterward. Applying that principle to the elements C, H, N, and O in turn gives this system.

${\displaystyle {\begin{cases}{\begin{array}{rl}7x&=7z\\8x+1y&=5z+2w\\1y&=3z\\3y&=6z+1w\end{array}}\end{cases}}}$

Can you balance the equation?

 ${\displaystyle {\rm {C}}_{7}{\rm {H}}_{8}\ +\ }$ ${\displaystyle {\rm {H}}{\rm {N}}{\rm {O}}_{3}\quad \longrightarrow \quad }$ ${\displaystyle {\rm {C}}_{7}{\rm {H}}_{5}{\rm {O}}_{6}{\rm {N}}_{3}\ +\ }$ ${\displaystyle {\rm {H}}_{2}{\rm {O}}}$

To finish each of these examples requires solving a system of equations. In each, the equations involve only the first power of the variables. This chapter shows how to solve any such system.

要完成这些例子中的每一个都需要解一个方程组。在每一个方程中，方程只涉及未知数的一次方。本章介绍如何求解任何此类方程组。

鄙人翻译水平有限，望见谅。上述内容仅供您参考。中国目前的数学教育的确也存在一些问题，虽然我可能并未遇见您所述的问题。但是还是希望您可以尽可能参考中国大陆与台湾地区的实际情况为高中数学作出更多贡献。

最后，再次感谢您对维基教科书做出的贡献。祝您2021年新年快乐！