跳至內容

Maple/方程求解

維基教科書,自由的教學讀本

二次多項式方程

[編輯]

求解 f=0;

solve(f,x);




三次多項式方程

[編輯]

solve(f,x);

,

高次多項式方程

[編輯]

f := x^7+3*x = 7;

solve(f,x);

RootOf(, index = 1),
RootOf(, index = 2),
RootOf(, index = 3),
RootOf(, index = 4),
RootOf(, index = 5),
RootOf(, index = 5),
RootOf(, index =7),

evalf(%);

  • (1.1922047171828134),
  • (0.8658388666792263) + (0.9230818802764879) I,
  • (0.2099602786426775) + (1.3442579297631496) I,
  • (1.2519809466279554) + (0.6424819505558892) I,
  • (1.2519809466279554) - (0.6424819505558892) I,
  • (0.2099602786426775) - (1.3442579297631496) I,
  • (0.8658388666792263) - (0.9230818802764879) I

三角函數方程

[編輯]

f := sin(x)^3+5*cosh(x) = 0;


> solve(f, x);


RootOf())

> evalf(%);

0.2873691672 - 1.111497506 I

方程組

[編輯]
> p1 := x*y*z-x*y^2-z-x-y; p2 := x*z-x^2-z-y+x; p3 := z^2-x^2-y^2;
> sys := {p1, p2, p3};
> var := {x, y, z};
> solve(sys, var);
: {x = 0, y = y, z = -y}, {x = 3, y = 4, z = 5}, {x = 1, y = 0, z = -1}

三角函數方程組

[編輯]
> f1 := cos(x)+sin(3*y)+tan(5*z) = 0;
> f2 := cos(3*z)+tan(3*y^2)-sin(2*z^3) = 33;
> f3 := tan(4*x+y)-sin(5*y-4*z) = 2*x;
> sys1 := {f1, f2, f3};
> var1 := {x, y, z};
{x, y, z}
> fsolve(sys1, var1);
{x = -10.77771790, y = -2.397849343, z = -7.382158103}