誘導公式 是數學 三角函數 中將角度 比較大的三角函數利用角度 的周期 性,轉換為角度比較小的三角函數 的變形公式。誘導公式分為以下六類:
sin
(
2
k
π
+
α
)
=
sin
α
,
k
∈
Z
{\displaystyle \sin(2k\pi +\alpha )=\sin \alpha ,k\in \mathbb {Z} }
cos
(
2
k
π
+
α
)
=
cos
α
,
k
∈
Z
{\displaystyle \cos(2k\pi +\alpha )=\cos \alpha ,k\in \mathbb {Z} }
tan
(
2
k
π
+
α
)
=
tan
α
,
k
∈
Z
{\displaystyle \tan(2k\pi +\alpha )=\tan \alpha ,k\in \mathbb {Z} }
cot
(
2
k
π
+
α
)
=
cot
α
,
k
∈
Z
{\displaystyle \cot(2k\pi +\alpha )=\cot \alpha ,k\in \mathbb {Z} }
sec
(
2
k
π
+
α
)
=
sec
α
,
k
∈
Z
{\displaystyle \sec(2k\pi +\alpha )=\sec \alpha ,k\in \mathbb {Z} }
csc
(
2
k
π
+
α
)
=
csc
α
,
k
∈
Z
{\displaystyle \csc(2k\pi +\alpha )=\csc \alpha ,k\in \mathbb {Z} }
sin
(
π
+
α
)
=
−
sin
α
{\displaystyle \sin(\pi +\alpha )=-\sin \alpha }
cos
(
π
+
α
)
=
−
cos
α
{\displaystyle \cos(\pi +\alpha )=-\cos \alpha }
tan
(
π
+
α
)
=
tan
α
{\displaystyle \tan(\pi +\alpha )=\tan \alpha }
cot
(
π
+
α
)
=
cot
α
{\displaystyle \cot(\pi +\alpha )=\cot \alpha }
sec
(
π
+
α
)
=
−
sec
α
{\displaystyle \sec(\pi +\alpha )=-\sec \alpha }
csc
(
π
+
α
)
=
−
csc
α
{\displaystyle \csc(\pi +\alpha )=-\csc \alpha }
sin
(
−
α
)
=
−
sin
α
{\displaystyle \sin(-\alpha )=-\sin \alpha }
cos
(
−
α
)
=
cos
α
{\displaystyle \cos(-\alpha )=\cos \alpha }
tan
(
−
α
)
=
−
tan
α
{\displaystyle \tan(-\alpha )=-\tan \alpha }
cot
(
−
α
)
=
−
cot
α
{\displaystyle \cot(-\alpha )=-\cot \alpha }
sec
(
−
α
)
=
sec
α
{\displaystyle \sec(-\alpha )=\sec \alpha }
csc
(
−
α
)
=
−
csc
α
{\displaystyle \csc(-\alpha )=-\csc \alpha }
公式四(在單位圓中各三角函數線關於y 軸的對稱性)[ 編輯 ]
sin
(
π
−
α
)
=
sin
α
{\displaystyle \sin(\pi -\alpha )=\sin \alpha }
cos
(
π
−
α
)
=
−
cos
α
{\displaystyle \cos(\pi -\alpha )=-\cos \alpha }
tan
(
π
−
α
)
=
−
tan
α
{\displaystyle \tan(\pi -\alpha )=-\tan \alpha }
cot
(
π
−
α
)
=
−
cot
α
{\displaystyle \cot(\pi -\alpha )=-\cot \alpha }
sec
(
π
−
α
)
=
−
sec
α
{\displaystyle \sec(\pi -\alpha )=-\sec \alpha }
csc
(
π
−
α
)
=
csc
α
{\displaystyle \csc(\pi -\alpha )=\csc \alpha }
sin
(
π
2
−
α
)
=
cos
α
{\displaystyle \sin \left({\frac {\pi }{2}}-\alpha \right)=\cos \alpha }
cos
(
π
2
−
α
)
=
sin
α
{\displaystyle \cos \left({\frac {\pi }{2}}-\alpha \right)=\sin \alpha }
tan
(
π
2
−
α
)
=
cot
α
{\displaystyle \tan \left({\frac {\pi }{2}}-\alpha \right)=\cot \alpha }
cot
(
π
2
−
α
)
=
tan
α
{\displaystyle \cot \left({\frac {\pi }{2}}-\alpha \right)=\tan \alpha }
sec
(
π
2
−
α
)
=
csc
α
{\displaystyle \sec \left({\frac {\pi }{2}}-\alpha \right)=\csc \alpha }
csc
(
π
2
−
α
)
=
sec
α
{\displaystyle \csc \left({\frac {\pi }{2}}-\alpha \right)=\sec \alpha }
sin
(
π
2
+
α
)
=
cos
α
{\displaystyle \sin \left({\frac {\pi }{2}}+\alpha \right)=\cos \alpha }
cos
(
π
2
+
α
)
=
−
sin
α
{\displaystyle \cos \left({\frac {\pi }{2}}+\alpha \right)=-\sin \alpha }
tan
(
π
2
+
α
)
=
−
cot
α
{\displaystyle \tan \left({\frac {\pi }{2}}+\alpha \right)=-\cot \alpha }
cot
(
π
2
+
α
)
=
−
tan
α
{\displaystyle \cot \left({\frac {\pi }{2}}+\alpha \right)=-\tan \alpha }
sec
(
π
2
+
α
)
=
−
csc
α
{\displaystyle \sec \left({\frac {\pi }{2}}+\alpha \right)=-\csc \alpha }
csc
(
π
2
+
α
)
=
sec
α
{\displaystyle \csc \left({\frac {\pi }{2}}+\alpha \right)=\sec \alpha }
sin
(
3
π
2
−
α
)
=
−
cos
α
{\displaystyle \sin \left({\frac {3\pi }{2}}-\alpha \right)=-\cos \alpha }
cos
(
3
π
2
−
α
)
=
−
sin
α
{\displaystyle \cos \left({\frac {3\pi }{2}}-\alpha \right)=-\sin \alpha }
tan
(
3
π
2
−
α
)
=
cot
α
{\displaystyle \tan \left({\frac {3\pi }{2}}-\alpha \right)=\cot \alpha }
cot
(
3
π
2
−
α
)
=
tan
α
{\displaystyle \cot \left({\frac {3\pi }{2}}-\alpha \right)=\tan \alpha }
sec
(
3
π
2
−
α
)
=
−
csc
α
{\displaystyle \sec \left({\frac {3\pi }{2}}-\alpha \right)=-\csc \alpha }
csc
(
3
π
2
−
α
)
=
−
sec
α
{\displaystyle \csc \left({\frac {3\pi }{2}}-\alpha \right)=-\sec \alpha }
sin
(
3
π
2
+
α
)
=
−
cos
α
{\displaystyle \sin \left({\frac {3\pi }{2}}+\alpha \right)=-\cos \alpha }
cos
(
3
π
2
+
α
)
=
sin
α
{\displaystyle \cos \left({\frac {3\pi }{2}}+\alpha \right)=\sin \alpha }
tan
(
3
π
2
+
α
)
=
−
cot
α
{\displaystyle \tan \left({\frac {3\pi }{2}}+\alpha \right)=-\cot \alpha }
cot
(
3
π
2
+
α
)
=
−
tan
α
{\displaystyle \cot \left({\frac {3\pi }{2}}+\alpha \right)=-\tan \alpha }
sec
(
3
π
2
+
α
)
=
csc
α
{\displaystyle \sec \left({\frac {3\pi }{2}}+\alpha \right)=\csc \alpha }
csc
(
3
π
2
+
α
)
=
−
sec
α
{\displaystyle \csc \left({\frac {3\pi }{2}}+\alpha \right)=-\sec \alpha }
值得注意的是,公式一至八其實都存在著內在聯繫,可以寫成以下形式:
sin
(
k
π
2
±
α
)
,
k
∈
Z
{\displaystyle \sin \left({\frac {k\pi }{2}}\pm \alpha \right),k\in \mathbb {Z} }
cos
(
k
π
2
±
α
)
,
k
∈
Z
{\displaystyle \cos \left({\frac {k\pi }{2}}\pm \alpha \right),k\in \mathbb {Z} }
tan
(
k
π
2
±
α
)
,
k
∈
Z
{\displaystyle \tan \left({\frac {k\pi }{2}}\pm \alpha \right),k\in \mathbb {Z} }
cot
(
k
π
2
±
α
)
,
k
∈
Z
{\displaystyle \cot \left({\frac {k\pi }{2}}\pm \alpha \right),k\in \mathbb {Z} }
sec
(
k
π
2
±
α
)
,
k
∈
Z
{\displaystyle \sec \left({\frac {k\pi }{2}}\pm \alpha \right),k\in \mathbb {Z} }
csc
(
k
π
2
±
α
)
,
k
∈
Z
{\displaystyle \csc \left({\frac {k\pi }{2}}\pm \alpha \right),k\in \mathbb {Z} }
可用如下口訣將聯繫記憶起來:「奇變偶不變,符號看象限」。意思為,當
k
{\displaystyle k}
為奇數 時,
sin
{\displaystyle \sin }
變為
cos
{\displaystyle \cos }
,
cos
{\displaystyle \cos }
變為
sin
{\displaystyle \sin }
,
tan
{\displaystyle \tan }
變為
cot
{\displaystyle \cot }
,
cot
{\displaystyle \cot }
變為
tan
{\displaystyle \tan }
,
sec
{\displaystyle \sec }
變為
csc
{\displaystyle \csc }
,
csc
{\displaystyle \csc }
變為
sec
{\displaystyle \sec }
;而
k
{\displaystyle k}
為偶數 時,三角函數則不變換。對於正負號,則要看最後角所在的象限進行判斷,可以使用如下口訣:CAST ,也可以使用ASTC (All Students Take Calculus) 用來記憶。
第一象限的 A 即是 All(全部皆正)。
第二象限的 S 即是 Sin e & CoS ecant(正弦 以及餘割 為正)。
第三象限的 T 即是 Tan gent & Cot angent(正切 以及餘切 為正)。
第四象限的 C 即是 Cos ine & SeC ant(餘弦 以及正割 為正)。