定義: | a b c d | = a d − b c {\displaystyle {\begin{vmatrix}a&b\\c&d\end{vmatrix}}=ad-bc}
例如: | 2 3 1 4 | = 2 ⋅ 4 − 3 ⋅ 1 = 5 {\displaystyle {\begin{vmatrix}2&3\\1&4\end{vmatrix}}=2\cdot 4-3\cdot 1=5}
方程式組為: { a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 {\displaystyle {\begin{cases}a_{1}x+b_{1}y=c_{1}\\a_{2}x+b_{2}y=c_{2}\end{cases}}}
其解如下: x = | c 1 b 1 c 2 b 2 | | a 1 b 1 a 2 b 2 | , y = | a 1 c 1 a 2 c 2 | | a 1 b 1 a 2 b 2 | {\displaystyle x={\frac {\left|{\begin{matrix}c_{1}&b_{1}\\c_{2}&b_{2}\end{matrix}}\right|}{\left|{\begin{matrix}a_{1}&b_{1}\\a_{2}&b_{2}\end{matrix}}\right|}},\qquad y={\frac {\left|{\begin{matrix}a_{1}&c_{1}\\a_{2}&c_{2}\end{matrix}}\right|}{\left|{\begin{matrix}a_{1}&b_{1}\\a_{2}&b_{2}\end{matrix}}\right|}}}