纯粹数学/引言

维基教科书,自由的教学读本
跳到导航 跳到搜索

数量的研究起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质于数论中有详细的研究,此一理论包括了如费马最后定理之著名的结果。数论还包括两个被广为探讨的未解问题:孪生质数猜想及哥德巴赫猜想。

当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:艾礼富数,它允许无限集合之间的大小可以做有意义的比较。

自然数 整数 有理数 实数 复数
结构[编辑]

许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。 创立于二十世纪三十年代的法国的布尔巴基学派认为:纯粹数学,是研究抽象结构的理论。 结构,就是以初始概念和公理出发的演绎系统。 布尔巴基学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,环通度,维数……)。

Elliptic curve simple.png Rubik's cube.svg Group diagdram D6.svg Lattice of the divisibility of 60.svg
数论 群论 图论 序理论
变化[编辑]

了解及描述变化在自然科学里是一普遍的议题,而微积分更为研究变化的有利工具。函数诞生于此,做为描述一变化的量的核心概念。对于实数及实变函数的严格研究为实分析,而复分析则为复数的等价领域。黎曼猜想-数学最基本的未决问题之一-即以复分析来描述。泛函分析注重在函数的(一般为无限维)空间上。泛函分析的众多应用之一为量子力学。许多的问题很自然地会导出数量与其变化率之间的关系,而这则被微分方程式所研究著。在自然界中的许多现象可以被动力系统所描述;混沌理论明确化许多表现出不可预测的系统之行为,而且为决定性系统的行为。

Integral as region under curve.svg Vectorfield jaredwf.png Airflow-Obstructed-Duct.png Limitcycle.jpg Lorenz attractor.svg Princ Argument C1.svg
微积分 向量分析 微分方程 动力系统 混沌理论 复分析