微分几何/参数曲线
外观
在真正开始研究曲线前,我们必须先对曲线做好定义。
就一般人以抽象的概念来看,曲线应该是在空间中的一种一维连续物件。而为了很方便的展现此种一维以及连续性质,我们很自然的就用参数式来描述曲线。而在微分几何的范围里,我们理所当然的会要求可微性(我们说一个实数函数可微,指此函数在任意点接存在任意阶导数)。因此我们有以下的定义:
定义:可微参数曲线是一个可微函数 ,其中 为一开区间。
上述函数的可微性是指,当我们写成笛卡尔座标 时, 、 及 皆为可微实数函数。当中的 称为曲线的参数,而开区间 的上下界可以是 。
编者待办: |