電磁學/靜電學的解法

維基教科書,自由的教學讀本
跳至導覽 跳至搜尋

4.2.2 一無限大盤帶一常數充電密度,平行於一無限大接地導體盤上距離處,如圖。求處處電場。

4.2.3 一正點充電位於一大街地導體盤上距離處如圖。此導體盤於平面卡氏座標。求板上點處電場強度,

4.2.4 一無限大接地導體位於平面。一點充電帶到。求此電位分布與此電廠分布

4.2.5 一無限大接地板導體位於平面。一點充電帶到。求

  1. 此表面充電密度
  2. 此總充電induced於導體平面上。

4.2.6 一無限大接地平面導體位於平面。一點充電帶到

  1. 繪製此映像法模型
  2. 解釋可以支持此映像法的此理論。
  3. 求此系統靜電能。
  4. 受力。
  5. 求要多少能量將此帶電移到一距離此無限大盤導體2d遠處。

4.2.7 一點充電距離一接地導體盤處。需多少能量將此帶電移到距此盤無窮遠處?

4.2.9 一正點充電位於距兩接地perpendicular導體半平面們處,如圖。求由這些充電induced於這些平面上形成於上力。

4.2.10 求image充電們將取代此導電的邊界們maintained於零電位對於一無限線帶電位於兩大intersecting導體平面們夾角midway。

4.6.1 求由拉普拉斯等式解出一電容此空氣區此電位分布與此電場強度。此電容由兩厚平行金屬板相距組成。此上板於電位與此低板於接地。

4.7.1 一無限長的矩形幫浦平行z軸,在有三接地金屬面。第四面在維持在一常數電位。求此幫浦內此電位。

4.7.2 一矩形導體容器寬、高,維持在零電位如圖。右板電位。容器裡無體充電。求此容器內電位分布

4.7.3 兩接地、semi-infinite、平行板electrodes相距。一第三electrode perpendicular且絕緣於兩者維持在一常數電位。求這些electrodes圍成此區域內此電位分布。

4.9.1 一非常長同軸纜線此內導體半徑電位與此外導體內徑為接地。若此二導體間的此介電質permittivity是一常數。求此二導體間空間內電位分佈。

4.9.2 二無限大絕緣導體盤電位0與以wedge狀所設定,如下所示。求此些區域的此些電位分佈:

4.9.3 一非常長同軸纜線內導體半徑電位外導體內徑接地。二導體間介電質permittivity

  1. 求二導體間空間內電位分佈。
  2. 求此同軸纜線的每單位長電容值。

4.9.4 近無限長導體盤於

4.10.1 一無限長薄導體圓柱半徑分成四等份的圓柱,如圖。求此圓柱內外電位分佈。

4.10.2 一無限長薄導體圓柱殼半徑分成二半。求殼內外的電位分佈。

4.11.1 此導體球內殼半徑電位此外殼半徑電位。二同心殼間填充一絕緣材質。求這些殼間此電位分佈。

4.11.2 求一球狀的電子們的雲一均勻體積充電密度是一正的數量)在的內外此場由柏松與拉氏等式的

4.11.3 一球電容一內導體球半徑外導體內球牆半徑。此內外導體間填充一介電材質permittivity。內導體電位外導體接地。求此介電材質內此電壓與這些電場分佈、此表面充電密度與此些表面上的此總充電,與此電容電容值。

4.11.5 一導電錐與一地盤分開處有一infinitesimal絕緣間隙,如圖。錐軸perpendicular於導電地盤。此錐此電位V0此地此電位0。以此些球座標的拉氏等式解此區與此錐上此表面充電密度。提示:可能要使用此積分公式

4.11.6 一球導電殼半徑,中心在原點,空氣內電位(零電位於無限大處)。以表示。

  1. 求電位函數
  2. 求此電場
  3. 求此電場內儲存的能。

4.12.1 一不充電的導電球半徑置於一原均勻電場。求

  1. 此導體外的此電位分佈
  2. 此球的此介入後的此導體外的此電場強度