跳转到内容

圍棋/規則進階

维基教科书,自由的教学读本

圍棋規則有多種流派,下文將介紹各規則間的異同。

各規則簡介

[编辑]

古棋規則

[编辑]

古中國使用古棋規則,此非成文規則,歷史上也有演變,參見古棋與變體規則

中國規則

[编辑]

1954年,結合古棋規則與日本規則,中國棋院創立了中國規則。

臺灣規則

[编辑]

中華民國圍棋協會規則基本上使用了中國規則原文(除歸本數改名爲基本數),因此下文不再單獨提及。

智運會規則

[编辑]

因2008年智力運動會而生,爲中國規則的變體,解決了中國規則的貼點問題

應氏規則

[编辑]

由臺灣企業家應昌期獨立創制,對中國規則亦有影響。

日本規則

[编辑]

指現代日本規則。

圍棋在南北朝時期就已傳入日本,但正式傳入要到吉備真備來唐留學後歸國。日本圍棋起初受唐朝影響採用古棋數目法,並規定黑先,但約16世紀中期時廢除還棋頭和座子,並於20世紀成文,被日本棋院與關西棋院所採用。

日本規則的分數計算雖然與中國規則不同,但實際上為了相同添加了許多額外規定。參見死活例確認-日本棋院

韓國規則

[编辑]

指現代韓國規則。

韓國棋院採用韓國規則(20世紀中期之後)。韓國規則基本上來自日本規則,與日本規則無本質區別,因此下文不再單獨提及。

美國規則

[编辑]

美國圍棋協會採用美國規則。美國規則爲獨立創制,彌補了日本規則的缺點,並調和了數子法與數目法。

英法規則

[编辑]

英國圍棋協會與法國圍棋協會分別採用英國規則與法國規則,但其本質都是美國規則,因此下文不再單獨提及。

紐西蘭規則

[编辑]

紐西蘭規則為獨立創制。

Tromp Taylor規則

[编辑]

Tromp Taylor規則受邏輯嚴密的紐西蘭規則啓發而創制,應用於電腦圍棋。

凡例

[编辑]

為敘述方便,下文會使用一些變量。

黑方總着數:TB

白方總着數:TW

黑方實着數:RB

白方實着數:RW

黑方虛着數:VB

白方虛着數:VW

黑方活子數:LB

白方活子數:LW

黑方死子數:DB

白方死子數:DW

黑方目數:MB

白方目數:MW

中立點數:N

黑方點數(盤面):PB

白方點數(盤面):PW

點差(盤面):D=PB-PW

點差(盤面,數子法):DA

點差(盤面,數目法):DT

點差(貼點後):DK

實際貼點數:K=D-DK

貼點數(中國規則):KC

貼點數(其他規則):KO

點的單位

[编辑]

上節提到圍棋計分單位為「點」,但習慣上只有智運會和應氏規則稱「點」,使用其他數子法規則時稱「子」,使用數目法時稱「目」。

點數計算

[编辑]

中國規則與日本規則

[编辑]

各規則間最本質的不同是點數算法,中國規則使用數子法,日本規則使用數目法。

數子法算法為PB=LB+MB+0.5*N,PW=LW+MW+0.5*N,所以DA=LB+MB-LW-MW

數目法算法為PB=MB-DB,PW=MW-DW,所以DT=MB-DB-MW+DW

所以,DA-DT=LB-LW+DB-DW

因為RB=LB+DB,RW=LW+DW

所以DA-DT=RB-RW

美國規則

[编辑]

美國規則規定數子法和數目法都可以使用,但:

1. 每虛着1次給對方1顆棋子當做死子。

2. 最後行棋的必須是白方。也就是說,白虛+黑虛不意味着對局結束,白虛+黑虛+白虛才意味着對局結束。

所以,TB=LB+DB,TW=LW+DW

所以,DA-DT=TB-TW=0

可以看出,美國規則下,數子法與數目法等效,由於死子數不影響數子法計算,所以美國規則的本質是讓數目法向數子法靠攏。

智運會規則

[编辑]

智運會規則使用數子法規則,但:

若白方首先虛着,則要從黑方點數中扣除0.5點加給白方,稱為還子。

古棋規則

[编辑]

本節僅介紹古棋規則的算法,關於古棋規則的其他內容詳見古棋與變體規則

古中國依據歷史時期不同,使用不同但等效的圍棋規則(詳見:規則的時空演變)。一是古棋數子法(等效於中式數子法+還棋頭);二是古棋数目法(等效於美式數目法+還棋頭)。無論是古中國数目法,還是古中國数子法,都有還棋頭的規定,即:

古棋數子法: 雙方向各自的目中填入自己的棋子,直到活棋只剩下2眼,有眼雙活只剩下1眼1公氣,無眼雙活只剩下為止,此時棋盤上各自的子數就是各自的分數。

古棋數目法: 雙方向各自的目中填入自己的死子,虛着n次還要多填n子,如果黑方最後着子,白方還要多虛着1次。

貼點

[编辑]

貼點方法

[编辑]

不同規則貼點方法不同,貼點數也不同。一般是是直接給白方加點,只有中國規則是扣除黑方一定的點數,並將這些點數加給白方,即:

中國規則下,DK=PB-KC-(PW+KC)=D-2KC,K=D-DK=2KC

其他規則下,DK=PB-(PW+KO)=D-KO,K=D-DK=KO

當中國規則與其他規則K值相等時,KO=2KC。

中國,美國規則規定KC=3.75,即K=7.5

應氏規則規定KO=8,和棋黑勝,即K=7.5

智運會,日本規則規定KO=6.5,即K=6.5

紐西蘭規則規定KO=7,即K=7

Tromp Taylor及古棋規則未規定貼點數。

讓先與讓子的貼點

[编辑]

讓先與讓子是2種不公平對局,通常用於實力差距較大的棋手之間,實力較弱方執黑,具體而言:

讓先一般指貼點為0的對局,但美國規則中指貼點為0.5的對局。

讓子是指開局黑方連着n子(n>1),再白先黑後交替着子的對局,連着n子稱讓n子。

對於讓子局

中國規則規定讓n子時,KC=0.5n,即K=n。

美國規則規定若使用數子法時讓n(n>1)子,則KO=n-1,即K=n-1。

紐西蘭規則規定讓子時KO=0,即K=0。

其他規則未規定。

避免和棋

[编辑]

從上文可以看出貼點數通常不為整數,這是為了避免和棋。 令實際貼點數K=n+m(n為整數,0<m<1)。

當D=n時,DK=n-(n+m)=-m<0,白勝;當D=n+1時,DK=n+1-(n+m)=1-m>0,黑勝。

也就是說,只要0<m<1,m具體為多少不影響結果,習慣上,m=0.5。

中式算法的貼點問題

[编辑]

下文的中式算法指任何與中國數子法等效的算法。

中式算法中,PB=LB+MB+0.5*N,PW=LW+MW+0.5*N

設棋盤路數為S,則PB+PW=LB+MB+LW+MW+N=S*S

設n為整數,因為一般圍棋為19路,所以令S為奇數,則:

當PB=n時,PW=S*S-n,DA=PB-PW=2n-S*S,所以DA為奇數

當PB=n+0.5時,PW=S*S-n-0.5,DA=PB-PW=n+0.5-S*S+n+0.5=2n-S*S+1,所以DA為偶數

出現PB=n+0.5的前提是有奇數個有眼雙活,概率很小,所以DA一般為奇數,偶爾為偶數。

(若S為偶數,則上述結論的奇偶性完全相反)

設m為整數,當DA為2m-1,2m,2m+1;K=2m-0.5,2m+0.5,2m+1.5時,DA,K,DK的關係如下表所示:

DA DK DK DK
K=2m-0.5 K=2m+0.5 K=2m+1.5
2m-1 -0.5 -1.5 -2.5
2m +0.5 -0.5 -1.5
2m+1 +1.5 +0.5 -0.5

為簡化表述,稱DA=2m為盤2m[註 1],以此類推,則由上表可知:

當K=2m-0.5時,盤2m-1白勝,盤2m+1黑勝,盤2m黑勝

當K=2m+0.5時,盤2m-1白勝,盤2m+1黑勝,盤2m白勝

當K=2m+1.5時,盤2m-1白勝,盤2m+1白勝,盤2m白勝

由上述總結可以看出,貼2m-0.5和2m+1.5有明顯差別,因為會影響盤2m+1的勝負,但貼2m-0.5和2m+0.5差距不大,因為均是盤2m-1白勝,盤2m+1黑勝,只有盤2m的勝負有差別,但因為盤2m為偶數,出現概率很小,所以貼2m-0.5和2m+0.5的勝率差別不大。

貼點是為了公平,根據大量統計,19路圍棋中,貼5.5時,黑方勝率明顯高,貼7.5時,白方勝率明顯高。若貼6.5,由上文可知中式算法下與5.5差距不大,仍然是黑方勝率明顯高,而數目法因為沒有盤6罕見的問題,所以5.5和6.5是有明顯差距的,6.5時黑白勝率幾乎持平。也就是說,中式算法無法貼出最公平的貼點。

還子

[编辑]

上文提到,智運會規則規定:若白方首先虛着,則要從黑方點數中扣除0.5點加給白方,稱為還子。還子其實就是為了解決上述問題而提出的。下文論述了這一規定的思路。

1盤棋若由黑方最後着子,之後2虛終局,則TB-TW=1,TB>TW,對白方不公平。因此,我們可以規定,若黑方最後着子,則要從黑方點數中扣除0.5點加給白方,這樣不僅可以解決不公平的問題,還可以讓DA為偶數變得常見。

但這是理想狀況,實際在此規定下,黑方為了避免最後着子扣點,可能會繼續着子,若黑方的着子是白方必須應對的,則白方應對後,黑方可以虛着。若白方此時亦虛着,則白方成為了最後着子的一方,黑方不必扣點,所以白方恐怕也會繼續着子,使得對局沒完沒了地進行下去。

為了讓規則具有可用性,我們要考慮實際的對局是什麼樣的。

其實,當棋盤上仍有可爭之點時,任何一方都不敢選擇虛着,否則對方會搶走這些點。虛着的出現意味着棋盤上已無可爭之點,繼續下棋也不會改變結果。

換言之:一般來說,對局中的首次虛着以及之後的每1着都不會改變雙方點數。

再換言之:真正有意義的最後着子是首次虛着的前1着。

因此,我們可以將規定中的「黑方最後着子」改為「白方首先虛着」,即「若白方首先虛着,則要從黑方點數中扣除0.5點加給白方」,這樣規定就可以真正派上用場了。

對各規則算法的圖解

[编辑]

下圖對局共79着,第76,78,79着是虛着。黑死5子,白死2子,貼7.5點。

圖1

中國規則

PB=34+20-3.75=50.25

PW=35+11+3.75=49.75

PB-PW=0.5

日本規則

PB=20-5=15

PW=11-2+7.5=16.5

PB-PW=-1.5

美國數目法(白方還需再虛着1次,第80着):

PB=20-5-1=14

PW=11-2-3+7.5=13.5

PB-PW=0.5

智運會規則(白方首虛,須還子):

PB=34+20-3.75-0.5=49.75

PW=35+11+3.75+0.5=50.25

PB-PW=-0.5

古棋規則

PB=34+20-3.75-2=48.25

PW=35+11+3.75-4=45.75

PB-PW=2.5

中立點

[编辑]

中國、智運會、應氏規則中將中立點對半分配,其他規則則不將中立點納入分數計算。而日本規則還特別規定:只要1塊棋的氣中有中立點,則該棋塊圍的目也不計入分數。

禁全同

[编辑]

在上節介紹禁全同時,禁全同被表述為「若着子於某點後形成的局面是該次對局中曾出現過的,則不能着於該點」。這種表述被稱為Positional Superko Rule(簡稱:PSK)。禁全同還有其他表述,如:

Situational Superko Rule(簡稱:SSK):若於某處着子後形成的局面是曾出現過的,且下1步行棋的是同一方,則不能着子與此。

PSK與SSK統稱為Superko Rule。

Simple Ko Rule(簡稱:SK):可以交替提走對方顆子的棋形稱為「劫」。被提的一方下1步不能立刻回提。

PSK與SSK的區別

[编辑]

若一盤棋的某一局面如圖1所示,接下來黑白交替着子,局面一步步變為圖2,圖3。變至圖3後,根據PSK,黑方不可着於圖3的a位,因為這樣局面就變為圖4,和圖1一樣了。但根據SSK,棋行至圖1時,下1步行棋的是黑方,行至圖4時,下1步行棋的是白方,也就是說,圖1和圖4局面雖然相同,但下1步行棋的不是同一方,所以圖3時着子於a位是可以的。

簡而言之,PSK與SSK的區別在於:PSK只關注局面是否重複,而SSK還關注下1步行棋的是哪一方。

圖1
圖2
圖3
圖4

SK與Superko Rule的區別

[编辑]

圖5中有三個劫。

若1盤棋的某一局面如圖5所示,接下來黑白交替着子,局面一步步變為圖6,圖7,圖8,圖9,圖10。變至圖10後,根據PSK,白方不可着於圖10的a位,因為這樣局面會變為圖11,和圖5一樣了。而且接下來着子的是黑方,這點也和圖5一樣,因此也不符合SSK。根據SK,白6着於a位雖然是對黑3提子的回提,但因為白6與黑3間隔了2手而不是1手棋,不屬於立刻回提,因此白6可以着於a位。

簡而言之,SK只禁止立刻回提劫,其他形式的局面重複不禁止。

圖5
圖6
圖7
圖8
圖9
圖10
圖11

總結

[编辑]

Superko Rule較SK更為嚴格,PSK又較SSK更為簡潔。但PSK條件上過於嚴格,導致有無法處理的邊沿問題,不及SSK嚴謹。

自殺

[编辑]

着子於某點後,因己方有無氣之子但對方沒有,而提走己方無氣之子的行為稱作自殺。 大部分規則不許自殺,但若無明文規定,則可能允許,具體情況要結合禁全同規則判定。

颗子自殺與禁全同

[编辑]

PSK禁止顆子自殺。因為顆子自盡相當於着子後局面未變,也就是形成了曾出現過的局面。

SSK禁止對方虛着後己方立刻顆子自殺,因為這相當於讓對方兩次面對同一局面。但SSK不禁止對方着子後己方立刻顆子自殺,因為局面雖然重複,但兩次面對該局面的不是同一方。

SK不禁止顆子自殺,因為顆子自殺不屬於立刻回提劫。

塊子自殺

[编辑]

任何禁全同規則都不禁止塊子自殺。

繼續對局

[编辑]

若2虛後雙方對某塊棋的死活有爭議,則應繼續對局。中國規則規定「認為是死的先下」,日本規則規定「要求繼續對局方的對方先下」(等效於認為是活的先下),紐西蘭規則規定「棋子死活有爭議的一方先下」(等效於認為是活的先下),美國規則規定「最後虛着方的對方先下」(也就是不打亂原本的次序)。

出入法與歸本法

[编辑]

黑勝n子與DK的關係

[编辑]

若對局採用中國規則,黑185子,白176子,則貼點後點差DK=185-3.75-(176+3.75)=1.5,這樣的算法稱為出入法。但實際上裁判會宣佈黑勝3/4子而非1又1/2子,這個3/4是由185-3.75-180.5得來的,這樣的算法稱為歸本法,歸本法是中國規則特有的。當貼點後點差DK=0.5n時,可得黑勝n子(n<0即為白勝-n子),證明如下:

若黑為m子,則白為361-m子,DK=m-KC-(361-m+KC)=2m-2KC-361

若黑勝n子,則m-KC-180.5=n,所以n=2DK

子目關係

[编辑]

子與目這2個術語經常引起人們混亂,一個廣為流傳的謠言是1子=2目,綜合上文各節所述,1子=1目,那麼這個謠言為何得以流傳呢?原因是出入法與歸本法的區別導致勝1子=勝2目,貼1子=貼2目。此外在數目法中,提掉1顆棋子代表獲得2目(死子與其佔領的空點),因此提1子=得2目。

猜先

[编辑]

猜先是決定對局雙方誰執黑誰執白的方法。具體而言,是由一方手握若干白子暫不示人,另一方猜其奇偶。智運會和應氏規則規定由年長者握,年輕者猜,中國規則規定由高段者握,低段者猜,若段位相同則由年長者握,年輕者猜。中國規則和智運會規則還規定,猜奇偶的方法是出示1顆或2顆黑子,1顆代表奇數,2顆代表偶數。中國規則規定,猜對執黑,猜錯執白;智運會和應氏規則規定,猜對任選黑白,猜錯由對方選黑白。

實力評定

[编辑]

對棋手的實力評定有兩種方法,1種是等級分,1種是級位與段位。

等級分:等級分將棋手的實力量化為具體的數字,最常用的等級分算法是Elo,如中國圍棋等級分就採用了Elo,Elo也有一些變體,如WHR。非官方的世界圍棋等級分網站goratings就採用了WHR。

級位與段位:級位與段位是將棋手按實力分為幾個層級,層級越高代表實力越強,下表展示了級段位設定(通常如此)。

水平 級與段[註 2] 英文表示
新手 30級-1級 30k-1k
業餘棋手 1段-8段 1d-8d
職業棋手 一段-九段 1p-9p
榮譽段位 十段 10p

從上表可以看出,級位數字越小,水平越高,段位則相反。此外十段僅作為1種榮譽,而非實際段位。

現實中的段位只升不降,因而無法反映棋手隨年齡增長而出現的實力下滑,而網路中級段位可升可降。

無論是網路還是現實中,升級和升段通常都需要一定的對局數與勝局數,但現實中也可能因獲得全國或世界冠軍而直接升段。

古棋與變體規則

[编辑]

古棋規則

[编辑]

計算:古中國圍棋直到北周使用的都是古棋數子法,但到了唐朝就改用古棋數目法了,明朝又改回古棋數子法,並沿用至1954年,上文的點數計算已有敘述。

分數相等:古中國規定分數相等時先行者輸。

先後:起初並無規定,直到明朝蘇之軾纔在《弈藪》中規定爲白先。

路數:在古中國,圍棋起初是17路,後於南北朝時期改為19路。

座子:此外,不論17還是19路,古棋在開局前都會在4個4-4上放置棋子,稱爲座子,座子可能是為了避免模仿棋。(見圖12)

圖12

西藏規則

[编辑]

藏族圍棋爲17路12座子(如圖13)。禁全同規則爲不能在剛被提子的空點立刻着子。

圖13

巡將圍棋規則

[编辑]

20世紀中期之前,韓半島地區流行的是巡將圍棋。巡將圍棋爲19路16座子(第1手規定天元,因此也可以說是17座子,如下圖),規則爲絕對數目法,意思是在不破壞邊界完整的情況下,去除多餘的子(被稱爲冗子),然後數圍住的空點,但如果某顆棋子被去除後會導致己方有邊界棋子只剩1口氣時則不去除。如圖14中黑棋的目爲圖15中所有a點。(注:之所以黑4也算冗子是因爲去除黑4後上下2塊黑棋仍然斜向緊鄰,這在巡將圍棋中不算破壞邊界完整性,但去除黑2會導致黑7只剩1口氣,所以不去除)。

圖14
圖15
圖16

規則對比表格

[编辑]

現存規則

[编辑]
規則 子/目 ko 禁自殺 中立點 出/歸 貼點 虛着 最後行棋 還子 繼續 讓先 讓子
中國 數子 中國[註 3] 全部 對半 歸本 7.5 死先 0 n
日本 數目 SK 全部 無目 出入 6.5 活先
美國數子 數子 SSK 全部 不計 出入 7.5 死子 白方 不變 0.5 n-1
美國數目 數目 SSK 全部 不計 出入 7.5 死子 白方 不變
紐西蘭 數子 SSK [註 4] 不計 出入 7 活先 0 0
智運會 數子 SSK 全部 對半 出入 6.5
應氏 數子 應氏[註 5] 顆子 對半 出入 7.5
Tromp Taylor 數子 PSK 顆子 不計 出入

古棋與變體

[编辑]
規則 路數 子/目 ko 出/歸 虛着 最後行棋 還棋頭 座子
古目 17/19 數目 SK 出入 死子 後行方 4
古子 17/19 數子 SK 歸本(唐以前爲出入) 4
藏棋 17 數子 藏式 12
巡將 19 絕對數目 16/17

註釋

[编辑]
  1. 即「盤面黑勝2m點」的簡稱
  2. 中文中級位與業餘段位由阿拉伯數字表示,職業段位由漢字表示,而英文則由k,d,p表示,分別為kyu,dan(日文中「級」與「段」的羅馬字),professional的縮寫。
  3. 規則第6條“著子後不得使對方重複面臨曾出現過的局面”的表述上接近SSK(但官方英文翻譯“It is forbidden to create a whole board shape which has appeared before”卻像是PSK),實際上根據第20條確定的是禁止單劫立即回提以及假生類多劫循環。其它全域同形再現的罕見特例提到原則上禁止但也可能會無勝負、和棋、加賽等。實際比賽中遇到循環劫時,大多數時候也就按習慣法判為無勝負。
  4. 不禁止颗子自殺跟塊子自殺。但對方虛着後己方無法顆子自殺因會違反SSK
  5. 應氏禁全同規則較爲獨特,詳見參考資料部分的應氏規則原文

參考資料

[编辑]
  1. 中國規則-中國棋院
  2. 中國規則-央視網
  3. 臺灣規則-中華民國圍棋協會
  4. 日本規則-日本棋院
  5. 日本規則-央視網
  6. 韓國規則
  7. 韓國圍棋競賽規則
  8. 應氏規則-央視網
  9. 智運會規則-中國棋院
  10. 智運會規則-新浪體育
  11. 智運會圍棋競賽規則-新浪體育
  12. 智運會圍棋競賽規則-百度百科
  13. 美國規則-美國圍棋協會
  14. 法國規則-法國圍棋協會
  15. 紐西蘭規則-紐西蘭圍棋協會
  16. Tromp Taylor規則
  17. PSK與SSK-圍棋百科
  18. 圍棋規則收錄
  19. 當今世界圍棋規則概貌-陈祖源-弈客圍棋
  20. 關於圍棋規則-池田敏雄
  21. 陈祖源. 围棋规则新论. 成都: 蜀蓉棋艺出版社. 2000. ISBN 9787805486871. OCLC 953342983. 
  22. 陈祖源. 围棋规则演变史. 上海: 上海文化出版社. 2007. ISBN 9787807401476. OCLC 282437160.