我們知道直線段的長度怎麼算: 。因此我們可以用直線逼近的方式來定義曲線的弧長。
定義: 曲線 在區間 的弧長為 ,其中為的分割。若曲線可微,則我們可以得 。
若我們試着改變曲線參數,新參數 可微且嚴格遞增,而 ,我們對新的參數算弧長 。由此我們發現,曲線線段的弧長跟所取得曲線參數無關。
由於上述結果,我們可以對任意正則曲線取弧長參數 。若我們將 對 微分 ,假如 也為弧長參數,則我們發現 ;反過來說若 ,則 是弧長參數,即是說弧長參數與切向量長度等於 1 是充分必要條件。由於此方便的特性,我們往後會常使用弧長參數來探討曲線性質。