空間直線及其方程
定義:若平面{ Π 1 : a 1 x + b 1 y + c 1 z + d 1 = 0 {\displaystyle \Pi _{1}:{a_{1}x+b_{1}y+c_{1}z+d_{1}=0}} }與平面{ Π 2 : a 2 x + b 2 y + c 2 z + d 2 = 0 {\displaystyle \Pi _{2}:{a_{2}x+b_{2}y+c_{2}z+d_{2}=0}} }相交於直線 l {\displaystyle l} ,則直線 l {\displaystyle l} 的一般方程為:
{ a 1 x + b 1 y + c 1 z + d 1 = 0 a 2 x + b 2 y + c 2 z + d 2 = 0 {\displaystyle {\begin{cases}a_{1}x+b_{1}y+c_{1}z+d_{1}=0\\a_{2}x+b_{2}y+c_{2}z+d_{2}=0\\\end{cases}}}
已知直線上一點 M 0 ( x 0 , y 0 , z 0 ) {\displaystyle M_{0}(x_{0},y_{0},z_{0})} 和它的方向向量s=(m,n,p),設直線上的動點為M(x,y,z)則向量 M M 0 / / s {\displaystyle MM_{0}//s}
所以兩向量的對應坐標成比例,從而有這條直線的方程為: x − x 0 m = y − y 0 n = z − z 0 p {\displaystyle {x-x_{0} \over {m}}={y-y_{0} \over {n}}={z-z_{0} \over {p}}}
參數方程為 { x = x 0 + m t y = y 0 + n t z = z 0 + p t {\displaystyle {\begin{cases}x=x_{0}+mt\\y=y_{0}+nt\\z=z_{0}+pt\end{cases}}}
說明:在點向式方程中,某些分母為零時,其分子也理解為零。如當m=n=0,p≠0時直線方程為 { x = x 0 y = y 0 z = z 0 + p t {\displaystyle {\begin{cases}x=x_{0}\\y=y_{0}\\z=z_{0}+pt\end{cases}}}
若兩直線的方向向量分別為 a → {\displaystyle {\vec {a}}} 與 b → {\displaystyle {\vec {b}}} ,則它們的夾角為 arccos a → ⋅ b → | a → | ⋅ | b → | {\displaystyle \arccos {{\vec {a}}\cdot {\vec {b}} \over \left|{\vec {a}}\right|\cdot \left|{\vec {b}}\right|}}
若直線的方向向量為 a → {\displaystyle {\vec {a}}} ,平面的法向量為 b → {\displaystyle {\vec {b}}} ,則直線與平面的夾角為 arcsin a → ⋅ b → | a → | ⋅ | b → | {\displaystyle \arcsin {{\vec {a}}\cdot {\vec {b}} \over \left|{\vec {a}}\right|\cdot \left|{\vec {b}}\right|}}
(平面束)