希望快速了解或快速回顾高中数学的读者可以只看基础知识部分。其余部分是为需要参加学科考试或需要一定知识提升的读者准备的。
和角公式与差角公式是推导大量其它三角函数公式的基石。在证明和角公式与差角公式时,我们参照了中国大陆2003年版《全日制普通高级中学教科书·数学》的思路。这种证明不复杂,但是不算特别简明。在向量章节中学习了向量的点积和叉积后,和角公式与差角公式的几何意义会变得非常自然。
在后续的微积分课程中,利用复指数的欧拉恒等式也可以快速导出本节的和角公式和差角公式。但是欧拉恒等式的常见证明本身也是依赖许多三角函数公式的,因此并不适合作为和角公式和差角公式的证明方法,否则容易导致循环论证。
阅读本节内容只需要掌握弧度制与任意角的三角函数值章节的知识。
大多数情况下,掌握和角公式与差角公式的正向与逆向使用即可。它们本身的证明步骤比较繁琐,不必作为学习重点,考试很少考它们的由来证明。
在高中会作适当了解的双曲函数和后续微积分课程中的雅可比椭圆函数也有类似的两个变量的加法与减法公式。
在平面直角坐标系的单位圆上取如下4个点:
这样取点的动机是我们希望设法用角a和角b的正弦值和余弦值的组合表示出这两角之和或两角之差的正余弦值。
由两点间的距离公式(毕氏定理的推论)可知:
记坐标系的原点为O,因为与全等,所以有,即:
最后一步出现的式子叫做两个任意角之差的余弦值公式(subtraction formula for cosine of two arbitrary angles或difference formula for cosine of two arbitrary angles),它对于任意的角a和b都成立。上式演算的核心思路就是打开平方,并将相似的正、余弦的平方项整理到一起,以便利用对任意角始终成立的毕氏三角学恒等式化简结果。
提示:三角函数记号有一些常见的简写规则需要注意:(1)一般是指,一般是指,一般是指,一般是指;(2)当需要表达2个角之和的三角函数值,或一个角的负倍数的三角函数值时,函数的括号不能省略。例如不能省略括号,省略括号后含义将会完全不同。
在上述公式中用-b替换b,就得到两个任意角之和的余弦值公式(addition formula for cosine of two arbitrary angles或sum formula for cosine of two arbitrary angles):
继续使用以上结论,还可以得到2个诱导公式:
提示:虽然这2个公式在初中/国中阶段初学三角比例时遇到过,但是此前并未将它们推广到对任意角都适用的情形。
利用上述的余弦的差角公式和2个诱导公式,可得两个任意角之和的正弦值公式(addition formula for sine of two arbitrary angles或sum formula for sine of two arbitrary angles):
再次用-b替换上述公式中的b,同样可得两个任意角之差的正弦值公式(subtraction formula for sine of two arbitrary angles或difference formula for sine of two arbitrary angles)。
最后,我们推导两角和与差的正切公式(sum and difference formulas for tangent或tangent sum and difference Formulas)[1]:
我们将刚才导出的有关和与差的重要三角函数公式如下:
正弦函数、余弦函数、正切函数的和角公式与差角公式列举如下[2]:
- 两角和与差的正弦公式:
- 两角和与差的余弦公式:
- 两角和与差的正切公式:
其中的2个角度和都可以是任意大小的角。这些两角的和与差的三角函数公式也统称为和差恒等式(sum and difference identities)。
2个推广到任意角的公式:
本节最基础的是给角求值、给值求角、给值求值这3类问题。由于正弦与余弦的公式形式相似,所以我们将正/余弦的和/差角公式练习题单独放在一个小节,正切函数的和/差角公式也单独放在一个小节。
相关例题1:
计算或化简下列各式:
- (1) ;
- (2) ;
- (3) ;
- (4) ;
- (5) ;
- (6) ;
- (7) 。
相关例题2:
已知,求的值。
给值求值的问题一般需要先根据角度范围推测未知函数值的大小范围。再利用正余弦函数的毕氏三角学恒等式解方程。
相关例题3:
已知,求的值。
相关例题4:
已知为锐角,为第3象限角,且,求的值。
相关例题5:
已知,求的值。
相关例题6:
在平面直角坐标系中xOy中,以Ox为始边作2个锐角和,它们的终边分别与单位圆相交于A、B两点。已知A、B两点的横坐标分别为、,求的值。
相关例题7:
已知,分别求和的值。
相关例题8:
已知。
- (1) 求的值。
- (2) 求的值。
也有一些给值求角的题目需要先求出其它相关的未知三角函数值,然后再反推出角度大小。
相关例题9:
已知,求的值。
相关例题10:
已知,求的值。
相关例题1:
计算或化简下列各式:
- (1) ;
- (2) ;
- (3) ;
- (4) ;
- (5) ;
- (6) 。
相关例题2:
已知,求的值。
相关例题3:
已知,且和是方程的2个根,求的值。
相关例题4:
已知,求的值。
诱导公式是一组将角度比较大的三角函数转换为角度比较小的三角函数的变形公式。
诱导公式数量庞大,但是并不需要刻意记忆。借助三角函数的奇偶性、周期性、两角和与差的正/余弦公式,可以很方便地推导出各种诱导公式。这里列举几个必须熟记的:
其中后3个公式在初中/国中阶段遇到过,只是当时没有将其推广到任意角度。
提示:诱导公式并没有通用的外文名称,多半是华人数学工作者为了方便称呼而自创的术语。在对外术语交流中,“诱导”一词一般是与英文的“induce”(动词)或“induction”(名词)互译,表示从现有事物“引申”出来的新事物。
相关例题1:
利用两个任意角的和角公式与差角公式,快速导出上述诱导公式。
和差角公式与诱导公式有时需要结合起来使用。
相关例题2:
计算或化简下列各式:
- (1) ;
- (2) ;
- (3) 。
相关例题3:
计算下列各式:
- (1) ;
- (2) 。
在三角函数问题中,已知角度和待求表达式中的角度有时候并不一样,但是有间接的换算关系。这时需要根据根据代求表达式中角的特点,合理地转换为已知角度的加减组合。如果2个角度的和或差与存在直接联系,也会考虑逆用诱导公式。
角的常见等价拆分:
-
相关例题1:
计算下列各式:
- (1)
- (2)
- (3)
- (4)
相关例题2:
已知,求的值。
相关例题3:
已知,求的值。
相关例题4:
已知,求的值。
相关例题5:
已知,求的值。
相关例题6:
已知,求的值。
相关例题7:
已知,求的值。
相关例题8:
已知,求的值。
相关例题9:
已知。
- (1) 求的值。
- (2) 求的值。
相关例题10:
已知。
- (1) 求的值。
- (2) 求的值。
相关例题1:
在三角形ABC中,已知,则此三角形的形状为( )。
- A.锐角三角形;B.直角三角形;C.等腰三角形;D.等腰三角形或直角三角形
相关例题2:
在三角形ABC中,已知,则此三角形的形状为( )。
- A.锐角三角形;B.直角三角形;C.钝角三角形;D.等腰三角形
相关例题3:
已知在三角形ABC中,,求角A的大小。
相关例题4:
设角A为非等边三角形的最小内角,求函数的值域。
- A.
- B.
- C.
- D.
- 计算。
- 已知,点为角终边上的一点,求的大小。
- 已知,求的值。
- 已知,分别求和的值。
- 已知,分别求和的值。
- 在平面直角坐标系xOy中,角A和B的的顶点与原点重合,始边与x轴的非负半轴重合,终边分别与单位圆交于两点。
- (1) 求的值。
- (2) 限定,求的值。
- 已知,求的值。
- 已知在三角形ABC中,。如果将k取为a,则此时C是锐角;如果将k取为b,则此时C是直角;如果将k取为c,则此时C是钝角。求a、b、c的大小关系。
- 利用两角和与差的正弦、余弦、正切公式,分别推导其它3个三角函数(余切、正割、余割)的两角和与两角差公式。
- 求证:。
- 已知,通过展开并化简恒等式,证明三角形内角的嵌入不等式:。