跳至內容

微積分學/積分審斂法

維基教科書,自由的教學讀本

積分審斂法

[編輯]
積分審斂法

設級數,若在區間上連續遞減,則

  1. 收斂,則收斂
  2. 發散,則發散

積分審斂法實際上是比較審斂法的特例。

如圖,曲線為的圖像,各矩形面積之和為,顯然小於,因此若收斂,則收斂。

如圖,曲線為的圖像,各矩形面積之和為,顯然大於,因此若發散,則發散。

例1

[編輯]

對以下級數運用積分審斂法

解答

[編輯]

反常積分得為1,收斂,故級數收斂。

例2

[編輯]

對以下級數運用積分審斂法

解答

[編輯]

不滿足遞減要求。但實際上由極限審斂法便可得級數發散。

例3

[編輯]

對以下級數運用積分審斂法

解答

[編輯]

只在遞減,因此級數可改寫為,對後一項反常積分得,收斂,故級數收斂。