邏輯通路/孟氏定理
外观
< 邏輯通路
假設 A、B、C 為(平面上或空間中)不共線三點,D、E、F 分別為直線 上異於 A、B、C 的三點,則我們可以推得下列的事實: D、E、F 三點共線
|
證明
[编辑]- 我們先證明如果 D、E、F 三點共線的話,則上面所提的三個「有向比」的乘積為 -1。
- 如右圖,我們從 A、B、C 分別作垂線到直線 DEF 上。假設它們的垂足分別為 G、H、I,根據「有向比性質 (1)」,我們可以得知:
- 所以,
= = ..... 根據「有向比性質 (2)」 = (-1)(-1)(-1) = -1
- 因此,我們證明了三個「有向比」的乘積為 -1。
- 其次,我們來證明:如果三個「有向比」的乘積為 -1,則 D、E、F 三點共線
- 首先,我們考慮直線 。
- 直線 可能與直線 平行或相交,所以底下我們分成兩個路徑來思考:
- (1) 直線 與直線 平行
- (2) 直線 與直線 相交