# Help:数学公式

## 函数、符号及特殊字符

### 声调/变音符号

\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} ${\displaystyle {\acute {a}}{\grave {a}}{\hat {a}}{\tilde {a}}{\breve {a}}\,\!}$
\check{a} \bar{a} \ddot{a} \dot{a} ${\displaystyle {\check {a}}{\bar {a}}{\ddot {a}}{\dot {a}}\!}$

### 标准函数

\sin a \cos b \tan c ${\displaystyle \sin a\cos b\tan c\!}$
\sec d \csc e \cot f ${\displaystyle \sec d\csc e\cot f\,\!}$
\arcsin h \arccos i \arctan j ${\displaystyle \arcsin h\arccos i\arctan j\,\!}$
\sinh k \cosh l \tanh m \coth n\! ${\displaystyle \sinh k\cosh l\tanh m\coth n\!}$
\operatorname{sh}o\,\operatorname{ch}p\,\operatorname{th}q\! ${\displaystyle \operatorname {sh} o\,\operatorname {ch} p\,\operatorname {th} q\!}$
\operatorname{arsinh}r\,\operatorname{arcosh}s\,\operatorname{artanh}t ${\displaystyle \operatorname {arsinh} r\,\operatorname {arcosh} s\,\operatorname {artanh} t\!}$
\lim u \limsup v \liminf w \min x \max y\! ${\displaystyle \lim u\limsup v\liminf w\min x\max y\!}$
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\! ${\displaystyle \inf z\sup a\exp b\ln c\lg d\log e\log _{10}f\ker g\!}$
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n ${\displaystyle \deg h\gcd i\Pr j\det k\hom l\arg m\dim n\!}$

### 模代数

s_k \equiv 0 \pmod{m} ${\displaystyle s_{k}\equiv 0{\pmod {m}}\,\!}$
a\,\bmod\,b ${\displaystyle a\,{\bmod {\,}}b\,\!}$

### 微分

\nabla \, \partial x \, \mathrm{d}x \, \dot x \, \ddot y\, \mathrm{d}y/\mathrm{d}x\, \frac{\mathrm{d}y}{\mathrm{d}x}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2} ${\displaystyle \nabla \,\partial x\,\mathrm {d} x\,{\dot {x}}\,{\ddot {y}}\,\mathrm {d} y/\mathrm {d} x\,{\frac {\mathrm {d} y}{\mathrm {d} x}}\,{\frac {\partial ^{2}y}{\partial x_{1}\,\partial x_{2}}}}$

### 集合

\forall \exists \empty \emptyset \varnothing ${\displaystyle \forall \exists \emptyset \emptyset \varnothing \,\!}$
\in \ni \not \in \notin \subset \subseteq \supset \supseteq ${\displaystyle \in \ni \not \in \notin \subset \subseteq \supset \supseteq \,\!}$
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus ${\displaystyle \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus \,\!}$
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup ${\displaystyle \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup \,\!}$

### 运算符

+ \oplus \bigoplus \pm \mp - ${\displaystyle +\oplus \bigoplus \pm \mp -\,\!}$
\times \otimes \bigotimes \cdot \circ \bullet \bigodot ${\displaystyle \times \otimes \bigotimes \cdot \circ \bullet \bigodot \,\!}$
\star * / \div \frac{1}{2} ${\displaystyle \star */\div {\frac {1}{2}}\,\!}$

### 逻辑符号

\land (or \and) \wedge \bigwedge \bar{q} \to p ${\displaystyle \land \wedge \bigwedge {\bar {q}}\to p\,\!}$
\lor \vee \bigvee \lnot \neg q \And ${\displaystyle \lor \vee \bigvee \lnot \neg q\And \,\!}$

### 根号

\sqrt{x} \sqrt[n]{x} ${\displaystyle {\sqrt {x}}{\sqrt[{n}]{x}}\,\!}$

### 关系符号

\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} ${\displaystyle \sim \approx \simeq \cong {\dot {=}}{\overset {\underset {\mathrm {def} }{}}{=}}\,\!}$
< \le \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto ${\displaystyle <\leq \ll \gg \geq >\equiv \not \equiv \neq {\mbox{or}}\neq \propto \,\!}$
\lessapprox \lesssim \eqslantless \leqslant \leqq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox ${\displaystyle \lessapprox \lesssim \eqslantless \leqslant \leqq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox }$

### 几何符号

\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ ${\displaystyle \Diamond \,\Box \,\triangle \,\angle \perp \,\mid \;\nmid \,\|45^{\circ }\,\!}$

### 箭头

\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow ${\displaystyle \leftarrow \rightarrow \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \,\!}$
\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow (or \iff) ${\displaystyle \Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \!}$
\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow ${\displaystyle \uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow \!}$
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons ${\displaystyle \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,\!}$
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright ${\displaystyle \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \,\!}$
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft ${\displaystyle \curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!}$
\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow ${\displaystyle \mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \,\!}$

### 特殊符号

\And \eth \S \P \% \dagger \ddagger \ldots \cdots ${\displaystyle \And \eth \S \P \%\dagger \ddagger \ldots \cdots \,\!}$
\smile \frown \wr \triangleleft \triangleright \infty \bot \top ${\displaystyle \smile \frown \wr \triangleleft \triangleright \infty \bot \top \,\!}$
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar ${\displaystyle \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar \,\!}$
\ell \mho \Finv \Re \Im \wp \complement ${\displaystyle \ell \mho \Finv \Re \Im \wp \complement \,\!}$
\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp ${\displaystyle \diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp \,\!}$
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown ${\displaystyle \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown }$
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge ${\displaystyle \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge \!}$
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes ${\displaystyle \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes }$
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant ${\displaystyle \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant }$
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq ${\displaystyle \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq }$
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft ${\displaystyle \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft }$
\Vvdash \bumpeq \Bumpeq \eqsim \gtrdot ${\displaystyle \Vvdash \bumpeq \Bumpeq \eqsim \gtrdot }$
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq ${\displaystyle \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq }$
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \between \shortparallel \pitchfork ${\displaystyle \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \between \shortparallel \pitchfork }$
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq ${\displaystyle \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq }$
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid ${\displaystyle \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid }$
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr ${\displaystyle \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr }$
\subsetneq ${\displaystyle \subsetneq }$
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq ${\displaystyle \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq }$
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq ${\displaystyle \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq }$
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq ${\displaystyle \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq }$
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus ${\displaystyle \jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus \,\!}$
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq ${\displaystyle \oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq \,\!}$
\dashv \asymp \doteq \parallel ${\displaystyle \dashv \asymp \doteq \parallel \,\!}$
\ulcorner \urcorner \llcorner \lrcorner ${\displaystyle \ulcorner \urcorner \llcorner \lrcorner }$
\Coppa\coppa\varcoppa\Digamma\Koppa\koppa\Sampi\sampi\Stigma\stigma\varstigma ${\displaystyle \mathrm {\Coppa} \mathrm {\coppa} \mbox{\coppa} \mathrm {\Digamma} \mathrm {\Koppa} \mathrm {\koppa} \mathrm {\Sampi} \mathrm {\sampi} \mathrm {\Stigma} \mathrm {\stigma} \mathrm {\varstigma} }$

## 上标、下标及积分等

x<sup>2<sup>

x2

a_{i,j} ${\displaystyle a_{i,j}}$

HTML
x' ${\displaystyle x'}$

PNG
x^\prime ${\displaystyle x^{\prime }}$

x\prime ${\displaystyle x\prime }$

\ddot{y} ${\displaystyle {\ddot {y}}}$

\mathbf{c} ${\displaystyle \mathbf {c} }$
\overleftarrow{a b} ${\displaystyle {\overleftarrow {ab}}}$
\overrightarrow{c d} ${\displaystyle {\overrightarrow {cd}}}$
\widehat{e f g} ${\displaystyle {\widehat {efg}}}$

\begin{matrix} 5050 \\ \overbrace{ 1+2+\cdots+100 } \end{matrix} ${\displaystyle {\begin{matrix}5050\\\overbrace {1+2+\cdots +100} \end{matrix}}}$

\begin{matrix} \underbrace{ a+b+\cdots+z } \\ 26 \end{matrix} ${\displaystyle {\begin{matrix}\underbrace {a+b+\cdots +z} \\26\end{matrix}}}$

\begin{matrix} \sum_{k=1}^N k^2 \end{matrix} ${\displaystyle {\begin{matrix}\sum _{k=1}^{N}k^{2}\end{matrix}}}$

\begin{matrix} \prod_{i=1}^N x_i \end{matrix} ${\displaystyle {\begin{matrix}\prod _{i=1}^{N}x_{i}\end{matrix}}}$

\begin{matrix} \coprod_{i=1}^N x_i \end{matrix} ${\displaystyle {\begin{matrix}\coprod _{i=1}^{N}x_{i}\end{matrix}}}$

\begin{matrix} \lim_{n \to \infty}x_n \end{matrix} ${\displaystyle {\begin{matrix}\lim _{n\to \infty }x_{n}\end{matrix}}}$

\begin{matrix} \int_{-N}^{N} e^x\, \mathrm{d}x \end{matrix} ${\displaystyle {\begin{matrix}\int _{-N}^{N}e^{x}\,\mathrm {d} x\end{matrix}}}$

## 分数、矩阵和多行列式

\begin{matrix}
x & y \\
z & v
\end{matrix}
${\displaystyle {\begin{matrix}x&y\\z&v\end{matrix}}}$
\begin{vmatrix}
x & y \\
z & v
\end{vmatrix}
${\displaystyle {\begin{vmatrix}x&y\\z&v\end{vmatrix}}}$
\begin{Vmatrix}
x & y \\
z & v
\end{Vmatrix}
${\displaystyle {\begin{Vmatrix}x&y\\z&v\end{Vmatrix}}}$
\begin{bmatrix}
0      & \cdots & 0      \\
\vdots & \ddots & \vdots \\
0      & \cdots & 0
\end{bmatrix}
${\displaystyle {\begin{bmatrix}0&\cdots &0\\\vdots &\ddots &\vdots \\0&\cdots &0\end{bmatrix}}}$
\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}
${\displaystyle {\begin{Bmatrix}x&y\\z&v\end{Bmatrix}}}$
\begin{pmatrix}
x & y \\
z & v
\end{pmatrix}
${\displaystyle {\begin{pmatrix}x&y\\z&v\end{pmatrix}}}$
\bigl( \begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix} \bigr)
${\displaystyle {\bigl (}{\begin{smallmatrix}a&b\\c&d\end{smallmatrix}}{\bigr )}}$

f(n) =
\begin{cases}
n/2,  & \mbox{if }n\mbox{ is even} \\
3n+1, & \mbox{if }n\mbox{ is odd}
\end{cases}
${\displaystyle f(n)={\begin{cases}n/2,&{\mbox{if }}n{\mbox{ is even}}\\3n+1,&{\mbox{if }}n{\mbox{ is odd}}\end{cases}}}$

\begin{align}
f(x) & = (m+n)^2 \\
& = m^2+2mn+n^2 \\
\end{align}
{\displaystyle {\begin{aligned}f(x)&=(m+n)^{2}\\&=m^{2}+2mn+n^{2}\\\end{aligned}}}
begin{align}
3^{6n+3}+4^{6n+3}
& \equiv (3^3)^{2n+1}+(4^3)^{2n+1}\\
& \equiv 27^{2n+1}+64^{2n+1}\\
& \equiv 27^{2n+1}+(-27)^{2n+1}\\
& \equiv 27^{2n+1}-27^{2n+1}\\
& \equiv 0 \pmod{91}\\
\end{align}
{\displaystyle {\begin{aligned}3^{6n+3}+4^{6n+3}&\equiv (3^{3})^{2n+1}+(4^{3})^{2n+1}\\&\equiv 27^{2n+1}+64^{2n+1}\\&\equiv 27^{2n+1}+(-27)^{2n+1}\\&\equiv 27^{2n+1}-27^{2n+1}\\&\equiv 0{\pmod {91}}\\\end{aligned}}}
\begin{alignat}{3}
f(x) & = (m-n)^2 \\
f(x) & = (-m+n)^2 \\
& = m^2-2mn+n^2 \\
\end{alignat}
{\displaystyle {\begin{alignedat}{3}f(x)&=(m-n)^{2}\\f(x)&=(-m+n)^{2}\\&=m^{2}-2mn+n^{2}\\\end{alignedat}}}

\begin{array}{lcl}
z        & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
${\displaystyle {\begin{array}{lcl}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}}$

\begin{array}{lcr}
z        & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
${\displaystyle {\begin{array}{lcr}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}}$

<math>f(x) \,\!</math>
<math>= \sum_{n=0}^\infty a_n x^n </math>
<math>= a_0+a_1x+a_2x^2+\cdots</math>

${\displaystyle f(x)\,\!}$${\displaystyle =\sum _{n=0}^{\infty }a_{n}x^{n}}$${\displaystyle =a_{0}+a_{1}x+a_{2}x^{2}+\cdots }$

\begin{cases}
3x + 5y +  z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}
${\displaystyle {\begin{cases}3x+5y+z\\7x-2y+4z\\-6x+3y+2z\end{cases}}}$

\begin{array}{|c|c||c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}
${\displaystyle {\begin{array}{|c|c||c|}a&b&S\\\hline 0&0&1\\0&1&1\\1&0&1\\1&1&0\\\end{array}}}$

## 化学方程式

<chem>和<math>都是基于TeX的，所以显示的效果差不多，许多<math>语法也都可以在<chem>中直接调用。调用后若有某些元素显示不正常，一般把它括在{花括号}里就好了。但使用<chem>更简单也更容易理解。

<chem>2H2O</chem>
${\displaystyle {\ce {2H2O}}}$
<chem>NH4+</chem>
${\displaystyle {\ce {NH4+}}}$
<chem>SO4^{2-}</chem>
${\displaystyle {\ce {SO4^{2-}}}}$

<chem>A2{+}B2->2AB</chem>
${\displaystyle {\ce {A2{+}B2->2AB}}}$
<chem>A2{+}B2->[\vartriangle][H_2O]2AB</chem>
${\displaystyle {\ce {A2{+}B2->[\vartriangle ][H_{2}O]2AB}}}$[2]

-> 、<- 、<-> 、<=> 、v 、 \uparrow
${\displaystyle {\ce {->}}}$${\displaystyle {\ce {<-}}}$${\displaystyle {\ce {<->}}}$${\displaystyle {\ce {<=>}}}$${\displaystyle {\ce {v}}}$${\displaystyle {\ce {\uparrow }}}$

## 字体

### 希腊字母

\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta ${\displaystyle \mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta \!}$
\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi ${\displaystyle \mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \Xi \mathrm {O} \Pi \!}$
\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega ${\displaystyle \mathrm {P} \Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega \!}$

\alpha \beta \gamma \delta \epsilon \zeta \eta \theta ${\displaystyle \alpha \beta \gamma \delta \epsilon \zeta \eta \theta \!}$
\iota \kappa \lambda \mu \nu \xi \omicron \pi ${\displaystyle \iota \kappa \lambda \mu \nu \xi \mathrm {o} \pi \!}$
\rho \sigma \tau \upsilon \phi \chi \psi \omega ${\displaystyle \rho \sigma \tau \upsilon \phi \chi \psi \omega \!}$

\Epsilon\epsilon\varepsilon ${\displaystyle \mathrm {E} \epsilon \varepsilon }$
\Theta\theta\vartheta ${\displaystyle \Theta \theta \vartheta }$
\Kappa\kappa\varkappa ${\displaystyle \mathrm {K} \kappa \varkappa }$
\Pi\pi\varpi ${\displaystyle \Pi \pi \varpi }$
\Rho\rho\varrho ${\displaystyle \mathrm {P} \rho \varrho }$
\Sigma\sigma\varsigma ${\displaystyle \Sigma \sigma \varsigma }$
\Phi\phi\varphi ${\displaystyle \Phi \phi \varphi \,}$

\digamma ${\displaystyle \digamma }$

\boldsymbol{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta} ${\displaystyle {\boldsymbol {\mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta }}}$
\boldsymbol{\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi} ${\displaystyle {\boldsymbol {\mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \Xi \mathrm {O} \Pi }}}$
\boldsymbol{\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega} ${\displaystyle {\boldsymbol {\mathrm {P} \Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega }}}$

\boldsymbol{\alpha \beta \gamma \delta \epsilon \zeta \eta \theta} ${\displaystyle {\boldsymbol {\alpha \beta \gamma \delta \epsilon \zeta \eta \theta }}}$
\boldsymbol{\iota \kappa \lambda \mu \nu \xi \omicron \pi} ${\displaystyle {\boldsymbol {\iota \kappa \lambda \mu \nu \xi \mathrm {o} \pi }}}$
\boldsymbol{\rho \sigma \tau \upsilon \phi \chi \psi \omega} ${\displaystyle {\boldsymbol {\rho \sigma \tau \upsilon \phi \chi \psi \omega }}}$

\boldsymbol{\Epsilon\epsilon\varepsilon} ${\displaystyle {\boldsymbol {\mathrm {E} \epsilon \varepsilon }}}$
\boldsymbol{\Theta\theta\vartheta} ${\displaystyle {\boldsymbol {\Theta \theta \vartheta }}}$
\boldsymbol{\Kappa\kappa\varkappa} ${\displaystyle {\boldsymbol {\mathrm {K} \kappa \varkappa }}}$
\boldsymbol{\Pi\pi\varpi} ${\displaystyle {\boldsymbol {\Pi \pi \varpi }}}$
\boldsymbol{\Rho\rho\varrho} ${\displaystyle {\boldsymbol {\mathrm {P} \rho \varrho }}}$
\boldsymbol{\Sigma\sigma\varsigma} ${\displaystyle {\boldsymbol {\Sigma \sigma \varsigma }}}$
\boldsymbol{\Phi\phi\varphi} ${\displaystyle {\boldsymbol {\Phi \phi \varphi }}}$

\boldsymbol{\digamma} ${\displaystyle {\boldsymbol {\digamma }}}$

### 黑板粗体

\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}

${\displaystyle \mathbb {ABCDEFGHIJKLMNOPQRSTUVWXYZ} }$

1. ${\displaystyle \{\,}$花括号${\displaystyle \}\,}$中只有使用大写拉丁字母才能正常显示，使用小写字母或数字会得到其他符号。

### 正粗体

\mathbf{012…abc…ABC…}

${\displaystyle \mathbf {0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9} }$
${\displaystyle \mathbf {a\ b\ c\ d\ e\ f\ g\ h\ i\ j\ k\ l\ m\ n\ o\ p\ q\ r\ s\ t\ u\ v\ w\ x\ y\ z} }$
${\displaystyle \mathbf {A\ B\ C\ D\ E\ F\ G\ H\ I\ J\ K\ L\ M\ N\ O\ P\ Q\ R\ S\ T\ U\ V\ W\ X\ Y\ Z} }$

### 斜粗体

\boldsymbol{012…abc…ABC…\alpha \beta \gamma…}

${\displaystyle {\boldsymbol {0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9}}}$
${\displaystyle {\boldsymbol {a\ b\ c\ d\ e\ f\ g\ h\ i\ j\ k\ l\ m\ n\ o\ p\ q\ r\ s\ t\ u\ v\ w\ x\ y\ z}}}$
${\displaystyle {\boldsymbol {A\ B\ C\ D\ E\ F\ G\ H\ I\ J\ K\ L\ M\ N\ O\ P\ Q\ R\ S\ T\ U\ V\ W\ X\ Y\ Z}}}$
${\displaystyle {\boldsymbol {\alpha \ \beta \ \gamma \ \delta \ \epsilon \ \zeta \ \eta \ \theta \ \iota \ \kappa \ \lambda \ \mu \ \nu \ \xi \ o\ \pi \ \rho \ \sigma \ \tau \ \upsilon \ \phi \ \chi \ \psi \ \omega }}}$

### 斜体数字

\mathit{0123456789}

${\displaystyle {\mathit {0123456789}}\!}$

### 罗马体

\mathrm{012…abc…ABC…}\mbox{}\operatorname{}

${\displaystyle \mathrm {0123456789} \ }$
${\displaystyle \mathrm {ABCDEFGHIJKLMNOPQRSTUVWXYZ} \ }$
${\displaystyle \mathrm {abcdefghijklmnopqrstuvwxyz} \ }$

### 哥特体

\mathfrak{012…abc…ABC…}

${\displaystyle {\mathfrak {0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9}}}$
${\displaystyle {\mathfrak {a\ b\ c\ d\ e\ f\ g\ h\ i\ j\ k\ l\ m\ n\ o\ p\ q\ r\ s\ t\ u\ v\ w\ x\ y\ z}}}$
${\displaystyle {\mathfrak {A\ B\ C\ D\ E\ F\ G\ H\ I\ J\ K\ L\ M\ N\ O\ P\ Q\ R\ S\ T\ U\ V\ W\ X\ Y\ Z}}}$

### 手写体

\mathcal{ABC…}

${\displaystyle {\mathcal {ABCDEFGHIJKLMNOPSTUVWXYZ}}}$

### 希伯来字母

\aleph\beth\gimel\daleth

${\displaystyle \aleph \beth \gimel \daleth }$

## 括号

\left \Uparrow \frac{a}{b} \right \Downarrow ${\displaystyle \left\Uparrow {\frac {a}{b}}\right\Downarrow }$
\left \updownarrow \frac{a}{b} \right \Updownarrow ${\displaystyle \left\updownarrow {\frac {a}{b}}\right\Updownarrow }$

\left \langle \psi \right |
${\displaystyle \left[0,1\right)}$
${\displaystyle \left\langle \psi \right|}$

• 可以使用 \big, \Big, \bigg, \Bigg 控制括号的大小，比如代码
\Bigg ( \bigg [ \Big \{ \big \langle \left | \| \frac{a}{b} \| \right | \big \rangle \Big \} \bigg ] \Bigg )

显示︰

${\displaystyle {\Bigg (}{\bigg [}{\Big \{}{\big \langle }\left|\|x\|\right|{\big \rangle }{\Big \}}{\bigg ]}{\Bigg )}}$

## 空格

2个quad空格 \alpha\qquad\beta ${\displaystyle \alpha \qquad \beta }$ ${\displaystyle 2m\ }$
quad空格 \alpha\quad\beta ${\displaystyle \alpha \quad \beta }$ ${\displaystyle m\ }$

## 顏色

• 字體顏色︰{\color{色調}表達式}
• 背景顏色︰{\pagecolor{色調}表達式}

 ${\displaystyle \color {Apricot}{\text{Apricot}}}$ ${\displaystyle \color {Aquamarine}{\text{Aquamarine}}}$ ${\displaystyle \color {Bittersweet}{\text{Bittersweet}}}$ ${\displaystyle \color {Black}{\text{Black}}}$ ${\displaystyle \color {Blue}{\text{Blue}}}$ ${\displaystyle \color {BlueGreen}{\text{BlueGreen}}}$ ${\displaystyle \color {BlueViolet}{\text{BlueViolet}}}$ ${\displaystyle \color {BrickRed}{\text{BrickRed}}}$ ${\displaystyle \color {Brown}{\text{Brown}}}$ ${\displaystyle \color {BurntOrange}{\text{BurntOrange}}}$ ${\displaystyle \color {CadetBlue}{\text{CadetBlue}}}$ ${\displaystyle \color {CarnationPink}{\text{CarnationPink}}}$ ${\displaystyle \color {Cerulean}{\text{Cerulean}}}$ ${\displaystyle \color {CornflowerBlue}{\text{CornflowerBlue}}}$ ${\displaystyle \color {Cyan}{\text{Cyan}}}$ ${\displaystyle \color {Dandelion}{\text{Dandelion}}}$ ${\displaystyle \color {DarkOrchid}{\text{DarkOrchid}}}$ ${\displaystyle \color {Emerald}{\text{Emerald}}}$ ${\displaystyle \color {ForestGreen}{\text{ForestGreen}}}$ ${\displaystyle \color {Fuchsia}{\text{Fuchsia}}}$ ${\displaystyle \color {Goldenrod}{\text{Goldenrod}}}$ ${\displaystyle \color {Gray}{\text{Gray}}}$ ${\displaystyle \color {Green}{\text{Green}}}$ ${\displaystyle \color {GreenYellow}{\text{GreenYellow}}}$ ${\displaystyle \color {JungleGreen}{\text{JungleGreen}}}$ ${\displaystyle \color {Lavender}{\text{Lavender}}}$ ${\displaystyle \color {LimeGreen}{\text{LimeGreen}}}$ ${\displaystyle \color {Magenta}{\text{Magenta}}}$ ${\displaystyle \color {Mahogany}{\text{Mahogany}}}$ ${\displaystyle \color {Maroon}{\text{Maroon}}}$ ${\displaystyle \color {Melon}{\text{Melon}}}$ ${\displaystyle \color {MidnightBlue}{\text{MidnightBlue}}}$ ${\displaystyle \color {Mulberry}{\text{Mulberry}}}$ ${\displaystyle \color {NavyBlue}{\text{NavyBlue}}}$ ${\displaystyle \color {OliveGreen}{\text{OliveGreen}}}$ ${\displaystyle \color {Orange}{\text{Orange}}}$ ${\displaystyle \color {OrangeRed}{\text{OrangeRed}}}$ ${\displaystyle \color {Orchid}{\text{Orchid}}}$ ${\displaystyle \color {Peach}{\text{Peach}}}$ ${\displaystyle \color {Periwinkle}{\text{Periwinkle}}}$ ${\displaystyle \color {PineGreen}{\text{PineGreen}}}$ ${\displaystyle \color {Plum}{\text{Plum}}}$ ${\displaystyle \color {ProcessBlue}{\text{ProcessBlue}}}$ ${\displaystyle \color {Purple}{\text{Purple}}}$ ${\displaystyle \color {RawSienna}{\text{RawSienna}}}$ ${\displaystyle \color {Red}{\text{Red}}}$ ${\displaystyle \color {RedOrange}{\text{RedOrange}}}$ ${\displaystyle \color {RedViolet}{\text{RedViolet}}}$ ${\displaystyle \color {Rhodamine}{\text{Rhodamine}}}$ ${\displaystyle \color {RoyalBlue}{\text{RoyalBlue}}}$ ${\displaystyle \color {RoyalPurple}{\text{RoyalPurple}}}$ ${\displaystyle \color {RubineRed}{\text{RubineRed}}}$ ${\displaystyle \color {Salmon}{\text{Salmon}}}$ ${\displaystyle \color {SeaGreen}{\text{SeaGreen}}}$ ${\displaystyle \color {Sepia}{\text{Sepia}}}$ ${\displaystyle \color {SkyBlue}{\text{SkyBlue}}}$ ${\displaystyle \color {SpringGreen}{\text{SpringGreen}}}$ ${\displaystyle \color {Tan}{\text{Tan}}}$ ${\displaystyle \color {TealBlue}{\text{TealBlue}}}$ ${\displaystyle \color {Thistle}{\text{Thistle}}}$ ${\displaystyle \color {Turquoise}{\text{Turquoise}}}$ ${\displaystyle \color {Violet}{\text{Violet}}}$ ${\displaystyle \color {VioletRed}{\text{VioletRed}}}$ ${\displaystyle \color {White}{\text{White}}}$ ${\displaystyle \color {WildStrawberry}{\text{WildStrawberry}}}$ ${\displaystyle \color {Yellow}{\text{Yellow}}}$ ${\displaystyle \color {YellowGreen}{\text{YellowGreen}}}$ ${\displaystyle \color {YellowOrange}{\text{YellowOrange}}}$

• {\color{Blue}x^2}+{\color{Brown}2x} - {\color{OliveGreen}1}
${\displaystyle {\color {Blue}x^{2}}+{\color {Brown}2x}-{\color {OliveGreen}1}}$
• x_{\color{Maroon}1,2}=\frac{-b\pm\sqrt{{\color{Maroon}b^2-4ac}}}{2a}
${\displaystyle x_{\color {Maroon}1,2}={\frac {-b\pm {\sqrt {\color {Maroon}b^{2}-4ac}}}{2a}}}$

## 強制使用PNG

${\displaystyle 2x=1}$

${\displaystyle 2x=1\,}$

## 注释

1. 正確應該用 \overarc，但在這裡行不通。要用建議的語法作為解決辦法。）（使用\overarc時需要引入{arcs}套件。）
2. 无论是<chem>还是<math>都暂时不支持中文和中文标点；所以反应条件不能是中文。
3. 包括元维基在内大部分维基项目的帮助文档中，对此的处理方法是将加号之前的内容用花括号括起来；但笔者出于美观上的考虑选择介绍这种方法。