跳转到内容

国中数学/国中数学八年级/1-2 多项式的加减运算

维基教科书,自由的教学读本
 1-1 乘法公式 国中数学八年级
1-2 多项式的加减运算
1-3 多项式的乘除运算 

本章节要来谈谈数学上很常使用的基本式子:多项式(polynomial),并且谈谈它们的加减运算模式。它们的乘除模式留到下一节1-3 多项式的乘除运算讲解。

多项式

[编辑]

在一个式子中,若文字符号(通常是)与数字只利用加法乘法做运算而得,那这样的式子我们称为多项式。例如:是由得到的式子,所以它是一个多项式;是由得到的式子,它也是一个多项式。而依此定义,事实上也是多项式,不过在中学阶段,只会学习含有一个文字符号的多项式[注 1]

多项式的判别

[编辑]
  1. 多项式是一个式子,所以多项式本身没有等号
    • 不是多项式。
  2. 文字符号不能出现在分母,因为它用到了除法[注 2]。可是文字符号可以出现在分子,因为我们在七年级上学期3-1 一元一次式有提到,它是一个乘法运算。
    • 不是多项式,但是。
  3. 文字符号不能出现在绝对值内。但如果绝对值内没有未知数的话也是可以的。
    • 不是多项式,但是多项式。
  4. 文字符号不能出现在次方。另外未知数的次方要是正整数
    • 不是多项式。
  5. 文字符号不能出现在根号内[注 3]
    • 不是多项式。

多项式的名词

[编辑]

接下来介绍多项式的相关名词。在底下的介绍若没有特别说明,我们都是以多项式为例子。

  1. :多项式当中,使用加号(+)分开的各部分。
    • 在例子中,,所以有三个项:
    • 对于项的辨识,作者建议学生将前面的“运算符号()”都视为“性质符号”。对于这两个名词陌生的同学,请参考国中七年级 1-1 正数与负数的内容。
  2. 单项式(monomial):只有一个项的多项式[注 4]
    • 都是单项式。
  3. 次数:多项式的所有项当中,文字符号次数最大的数字。
    • 在例子中,所有项次数最大的是,它是二次方,所以次数为
    • 次数会记录为(多项式),如
  4. 系数:每一项出现的数字部分。
    • 在例子中,各项系数为
    • 各个项的系数可以直接称呼“的几次方项系数”,也可以省略称呼为“几次项系数”。如项系数是,也可以说二次项系数为
    • 没有文字符号的项称作常数项(constant term)。
    • 若多项式没有某一项,则称该项系数为。如没有项,所以项系数是
  5. 常数多项式:任何一个数字。如:、圆周率
    • 【课外补充】其中如果不是的任意数,我们称作零次多项式;若此多项式为,我们称作零多项式
  6. 升幂排列:将多项式的项依照次方数由小到大排列。
  7. 降幂排列:将多项式的项依照次方数由大到小排列。是最常使用的排列方式。
    • 为降幂排列,因为次数从降到;而此多项式的升幂排列为
例题

有一个多项式为,请问:

  1. 此多项式总共有几项?
  2. 此多项式各项系数是多少?
  3. 此多项式为几次多项式?
  4. 此多项式的升幂排列与降幂排列为何?
  1. 此多项式总共有项,它们分别是
  2. 各项系数依序为项系数为项系数为项系数为,常数项为
  3. 最高次方为,所以是五次多项式。
  4. 此多项式的升幂排列为,降幂排列为

随堂练习

有一个多项式为,请问:

  1. 此多项式总共有几项?
  2. 此多项式项系数是多少?
  3. 此多项式为几次多项式?
  4. 此多项式的升幂排列与降幂排列为何?[解答 1]

多项式的加法

[编辑]

多项式的加法运算方式就是同类项合并,搭配去括号规则,可以使用横式计算也可以使用直式计算。

而介绍同类项合并之前,介绍一下何谓“同类项”:

 同類項:兩個單項式中,其未知數相同,未知數的次方數也相同。

根据这个定义,以下是几个例子:

  1. 不是同类项,因为它们不是单项式
  2. 不是同类项,因为未知数不相同
  3. 不是同类项,因为未知数的次方数不相同
  4. 是同类项,因为未知数相同,未知数的次方数也相同。
  5. 不是同类项,因为虽然未知数相同,但未知数的次方数不相同的次方数也不相同。
  6. 任意两个常数都是同类项,如圆周率

接下来就是同类项合并的主要公式了,这里的都是常数,可以是任意形式的单项式(只要是相同的即可):

底下来做一个练习:

例题

化简下列各式:

在上面的例题的第1题中,;第2题中,


随堂练习

化简下列各式:

  1. [解答 2]

接下来练习比较复杂的例子:

例题

化简下列各式,答案使用降幂排列表示:



随堂练习

化简下列各式:

  1. [解答 3]

注解

[编辑]
  1. 唯一的例外是二元一次式
  2. 如果未知数出现在式子的分母,这样的式子我们称之为分式,这是高中会习得的教材。
  3. 关于根号,请见2-1 二次方根的意义
  4. 课外参考资料:维基百科:单项式

习题解答

[编辑]
  1. 1. 项。
    2.
    3. 次多项式。
    4.升幂排列为;降幂排列为
  2. 1.
    2.
    3.
  3. 1.
    2.
    3.